The complexity of the Hajós calculus for planar graphs

نویسندگان

  • Kazuo Iwama
  • Kazuhisa Seto
  • Suguru Tamaki
چکیده

The planar Hajós calculus is the Hajós calculus with the restriction that all the graphs that appear in the construction (including a final graph) must be planar. We prove that the planar Hajós calculus is polynomially bounded iff the Hajós calculus is polynomially bounded.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triangulations and the Hajós Conjecture

The Hajós Conjecture was disproved in 1979 by Catlin. Recently, Thomassen showed that there are many ways that Hajós conjecture can go wrong. On the other hand, he observed that locally planar graphs and triangulations of the projective plane and the torus satisfy Hajós Conjecture, and he conjectured that the same holds for arbitrary triangulations of closed surfaces. In this note we disprove t...

متن کامل

On Gallai's and Hajós' Conjectures for graphs with treewidth at most 3

A path (resp. cycle) decomposition of a graph G is a set of edge-disjoint paths (resp. cycles) of G that covers the edge set of G. Gallai (1966) conjectured that every graph on n vertices admits a path decomposition of size at most ⌊(n+ 1)/2⌋, and Hajós (1968) conjectured that every Eulerian graph on n vertices admits a cycle decomposition of size at most ⌊(n−1)/2⌋. Gallai’s Conjecture was veri...

متن کامل

Exponential Lower Bounds for the Tree-Like Hajós Calculus

The Hajj os Calculus is a simple, nondeterministic procedure which generates precisely the class of non-3-colorable graphs. In this note, we prove exponential lower bounds on the size of tree-like Hajj os constructions .

متن کامل

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

Reducing Hajós’ coloring conjecture to 4-connected graphs

Hajós conjectured that, for any positive integer k, every graph containing no Kk+1-subdivision is k-colorable. This is true when k ≤ 3, and false when k ≥ 6. Hajós’ conjecture remains open for k = 4, 5. In this paper, we show that any possible counterexample to this conjecture for k = 4 with minimum number of vertices must be 4-connected. This is a step in an attempt to reduce Hajós’ conjecture...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 411  شماره 

صفحات  -

تاریخ انتشار 2008