The complexity of the Hajós calculus for planar graphs
نویسندگان
چکیده
The planar Hajós calculus is the Hajós calculus with the restriction that all the graphs that appear in the construction (including a final graph) must be planar. We prove that the planar Hajós calculus is polynomially bounded iff the Hajós calculus is polynomially bounded.
منابع مشابه
Triangulations and the Hajós Conjecture
The Hajós Conjecture was disproved in 1979 by Catlin. Recently, Thomassen showed that there are many ways that Hajós conjecture can go wrong. On the other hand, he observed that locally planar graphs and triangulations of the projective plane and the torus satisfy Hajós Conjecture, and he conjectured that the same holds for arbitrary triangulations of closed surfaces. In this note we disprove t...
متن کاملOn Gallai's and Hajós' Conjectures for graphs with treewidth at most 3
A path (resp. cycle) decomposition of a graph G is a set of edge-disjoint paths (resp. cycles) of G that covers the edge set of G. Gallai (1966) conjectured that every graph on n vertices admits a path decomposition of size at most ⌊(n+ 1)/2⌋, and Hajós (1968) conjectured that every Eulerian graph on n vertices admits a cycle decomposition of size at most ⌊(n−1)/2⌋. Gallai’s Conjecture was veri...
متن کاملExponential Lower Bounds for the Tree-Like Hajós Calculus
The Hajj os Calculus is a simple, nondeterministic procedure which generates precisely the class of non-3-colorable graphs. In this note, we prove exponential lower bounds on the size of tree-like Hajj os constructions .
متن کاملOn the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کاملReducing Hajós’ coloring conjecture to 4-connected graphs
Hajós conjectured that, for any positive integer k, every graph containing no Kk+1-subdivision is k-colorable. This is true when k ≤ 3, and false when k ≥ 6. Hajós’ conjecture remains open for k = 4, 5. In this paper, we show that any possible counterexample to this conjecture for k = 4 with minimum number of vertices must be 4-connected. This is a step in an attempt to reduce Hajós’ conjecture...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 411 شماره
صفحات -
تاریخ انتشار 2008